
www.manaraa.com

Softw Syst Model (2013) 12:619–639
DOI 10.1007/s10270-011-0219-7

REGULAR PAPER

Where does model-driven engineering help? Experiences
from three industrial cases

Parastoo Mohagheghi · Wasif Gilani ·
Alin Stefanescu · Miguel A. Fernandez ·
Bjørn Nordmoen · Mathias Fritzsche

Received: 20 September 2010 / Revised: 3 September 2011 / Accepted: 29 September 2011 / Published online: 26 October 2011
© Springer-Verlag 2011

Abstract There have been few experience reports from
industry on how Model-Driven Engineering (MDE) is
applied and what the benefits are. This paper summarizes the
experiences of three large industrial participants in a Euro-
pean research project with the objective of developing tech-
niques and tools for applying MDE on the development of
large and complex software systems. The participants had
varying degrees of previous experience with MDE. They
found MDE to be particularly useful for providing abstrac-
tions of complex systems at multiple levels or from different
viewpoints, for the development of domain-specific mod-
els that facilitate communication with non-technical experts,
for the purposes of simulation and testing, and for the con-
sumption of models for analysis, such as performance-related

Communicated by Prof. Perdita Stevens.

P. Mohagheghi (B)
SINTEF, and Norwegian University of Science
and Technology, Oslo, Norway
e-mail: parastoo.mohagheghi@sintef.no

W. Gilani · M. Fritzsche
SAP Research Center, Belfast, UK
e-mail: wasif.gilani@sap.com

M. Fritzsche
e-mail: mathias.fritzsche@sap.com

A. Stefanescu
University of Pitesti, Pitesti, Romania
e-mail: alin.stefanescu@upit.ro

M. A. Fernandez
Ericsson, Valladolid, Spain
e-mail: miguel.a.fernandez@ericsson.com

B. Nordmoen
WesternGeco, Asker, Norway
e-mail: nordmoen@slb.com

decision support and system design improvements. From the
industrial perspective, a methodology is considered to be use-
ful and cost-efficient if it is possible to reuse solutions in
multiple projects or products. However, developing reusable
solutions required extra effort and sometimes had a nega-
tive impact on the performance of tools. While the compa-
nies identified several benefits of MDE, merging different
tools with one another in a seamless development environ-
ment required several transformations, which increased the
required implementation effort and complexity. Addition-
ally, user-friendliness of tools and the provision of features
for managing models of complex systems were identified as
crucial for a wider industrial adoption of MDE.

Keywords Model-driven engineering · Domain-specific
language · Simulation · Experience report · Eclipse ·
Complex systems

Abbreviations
API Application Programming Interface
BPM Business Process Modelling
DSL Domain-Specific Language
DSML Domain-Specific Modelling Language
GUI Graphical User Interface
MBT Model-Based Testing
MDE Model-Driven Engineering
MDPE Model-Driven Performance Engineering
OMG Object Management Group
SOA Service-Oriented Architecture
UML Unified Modeling Language

1 Introduction

For years, modelling has been applied as an important part
of software development in order to tackle complexity by

123

www.manaraa.com

620 P. Mohagheghi et al.

providing abstractions of a system and hiding technical
details. Nowadays, industry tends to use models more and
more for tasks other than just describing the system, for
example simulation, generating source code and perform-
ing various analyses at the model level. Model-Based Soft-
ware Development (MBSD) refers to approaches that use
models extensively in software development and covers a
wide spectrum of approaches, from using models for some
generation to “models only” [1]. Model-Driven Engineer-
ing (MDE) is an ambitious goal of using models in all the
stages of software development and performing transforma-
tions from models to other models or text such as source
code. MDE is a new paradigm in software development that
promises to solve several problems faced by developers by
raising the abstraction level and introducing more automation
in software development. In fact, significant improvements
have already been reported by some industry, as discussed in
[14]. Domain-Specific Modelling (DSM) approaches have
also long been practiced by industry to create modelling lan-
guages and generators and we find several successful cases
reported in the series of workshops on DSM and by the DSM
forum.1 On the other hand, other companies have not yet
started to apply model-driven approaches due to the associ-
ated cost and risks (heavy changes to the software develop-
ment process are required), the lack of expertise, “immature”
tools, or the lack of insight into the contexts in which the
approach can give useful results.

This paper presents experiences from the EU FP6 research
project MODELPLEX2 (September 2006–February 2010),
in which large industrial partners applied MDE on different
scenarios of complex software systems’ development. The
industrial partners were from different domains, i.e. enter-
prise business applications, telecommunication, airport crisis
management systems and data-intensive geological systems.
MODELPLEX had a total number of 21 partners, among
them tool vendors, research organizations, academia and
consultancy companies based in eight countries. By putt-
ing together tool providers and large industrial users, the
project provided a ground to evaluate the state of the prac-
tice of MDE, its benefits and pitfalls, and to improve the
state of the art. The three industrial cases represented in this
report involved more than 30 person-years of effort and thus
the experiences are from large-scale cases spanning several
years.

The remainder of this paper is organized as follows: Sect. 2
presents the research context while Sects. 3–5 are the descrip-
tion of the three industrial cases, how MDE was applied and
gained experiences. Section 6 provides summary, discussion
and a comparison to the state of the art. Finally, the paper

1 http://www.dsmforum.org/cases.html.
2 MODELPLEX (MODelling solution for comPLEX software sys-
tems); http://www.modelplex.org.

is concluded in Sect. 7 and gaps for future research are dis-
cussed.

2 The research context

Complex software systems have a strong need for a model-
based development approach since levels of abstraction are
required in order to enable human comprehension, communi-
cation and analysis, as well as for the synthesis of implemen-
tation artefacts. Complex systems in MODELPLEX were
described using five complexity dimensions, i.e. size, hetero-
geneity, distribution, dynamicity (requiring re-configuration
and management) and autonomy (loosely coupled, cooperat-
ing and autonomous systems). To address the challenges of
developing such complex systems, MODELPLEX identified
the need for innovations along four research areas:

• Model engineering capabilities for developing method-
ologies and tools for modelling complex systems. These
capabilities covered Domain-Specific Modelling Lan-
guage (DSML) engineering, composition of models, the
derivation of models from legacy code, and traceabil-
ity between requirements and models, between different
models and between models and generated artefacts.

• Verification and validation capabilities covering model
verification engines, performance analysis, simulation
tools, test generators and model debugging tools.

• System management capabilities to manage and config-
ure models after deployment, especially for systems of
systems and highly distributed devices.

• Common software architecture for integrating the MOD-
EDPLEX tools and techniques in an Eclipse-based
“MODELPLEX platform”. The MODELPLEX project
also offered a lightweight model repository and model
management facilities for managing large models. Every
industrial partner took advantage of a set of MODEL-
PLEX tools in addition to other external and internal tools,
integrating these in a case-specific workbench. Examples
are provided in the description of cases.

Research in all these areas included developing metamod-
els, model transformations and defining integration or map-
ping solutions to other tools.

Several of MODELPLEX tools were developed as open
source projects, mostly as Eclipse plug-ins. Also a number of
extension points were defined to support the plugging of dif-
ferent implementations providing similar functionality. For
example, all model-based testing tools can use the defined
extension point for plugging into the platform. The project
did not provide a UML modelling tool and the MODEL-
PLEX platform can be configured with a UML modeller of
choice that is Eclipse based and uses the standard UML2

123

http://www.dsmforum.org/cases.html
http://www.modelplex.org

www.manaraa.com

Where does model-driven engineering help? 621

Fig. 1 MODELPLEX
architecture

technology. Examples of modelling tools that satisfy these
requirements are Papyrus3, Topcased4 and Rational Software
Architect (RSA).5 However, the practice showed that inte-
grating MODELPLEX tools with different modelling tools
is not a straightforward task and there are several problems
in exchanging models as discussed later.

Figure 1 shows the MODELPLEX architecture, including
metamodels, extension points for simulation/testing/legacy
analysis tools, some of the tools developed within the project
(in grey colour), other frameworks and tools being counted
as external tools (in white colour), and the AnyLogic6 simu-
lation tool which is a commercial tool from XJ Technologies
who was a MODELPLEX partner. Appendix includes a short
description of the MODELPLEX tools and their application
areas.

MODELPLEX aimed to drive the research from the needs
of industrial partners. At the beginning of the project, the
industrial partners defined a set of requirements within the
context of their cases that reflected their business goals,
objectives and needs regarding MDE technologies and tools
(generally called solutions). These requirements were the
basis for developing solutions by tool vendors and research
partners. MODELPLEX was also strongly focused on the
empirical evaluation of the results. In order to evaluate the
solutions in a systematic way, all industrial partners defined

3 Papyrus; http://www.papyrusuml.org/.
4 Topcased; http://www.topcased.org/.
5 RSA;http://www.ibm.com/software/awdtools/architect/
swarchitect/.
6 AnyLogic simulation tool; http://www.xjtek.com/.

case-specific research questions that reflected their goals
with using MDE and their criteria for evaluation. Research
questions were answered by performing empirical studies
during the project such as case studies and internal surveys.
The empirical evaluation method in MODELPLEX is dis-
cussed in detail in [15].

In the following sections, we describe the context of
research performed in three industrial cases and focus in each
case on research areas that produced interesting results. We
also use experiences from other research performed in the
project to understand and interpret the findings.

3 SAP: large-scale enterprise business applications

SAP’s technology platform is based on a Service-Oriented
Architecture (SOA). This architecture elevates the design,
composition and management of enterprise services. The
SAP case is regarded as complex in the dimensions of size and
distribution, as the target systems are enterprise-scale busi-
ness processes which are inherently distributed and poten-
tially composed of hundreds of enterprise services. Different
technologies can be used to develop the applications provid-
ing and consuming enterprise services while these services
are integrated by the concept of “Composite Applications
(CA)” [6]. Thus a CA is realized as a composition of existing
services as well as third party services. The main challenges
that were addressed during MODELPLEX in the context of
CA were

(a) Predicting performance at the design time and continu-
ously optimizing the performance at run time. The goal

123

http://www.papyrusuml.org/
http://www.topcased.org/
http://www.ibm.com/software/awdtools/architect/swarchitect/
http://www.ibm.com/software/awdtools/architect/swarchitect/
http://www.xjtek.com/

www.manaraa.com

622 P. Mohagheghi et al.

Fig. 2 MDPE workbench

MDPE WorkbenchPredictionPredicted Data

History Data

TSPMPlan Data,
Objectives,
Constraints,

Requirements

Result

Performance
Analysis Actor

Process
Modelling Tool

Instances Data

Transformation
Chain Manager

Performance
Analysis Results

Process Run-
Time

Process Model
(e.g.Business

Process Model)

TIPM

Transformation
Chain

was to support business experts, who generally lack per-
formance-related skills, to take decisions related to the
performance of business processes, for example when
resources change.

(b) Integration testing of the components involved in a CA.

SAP is already advanced in MDE technologies using it on a
daily basis in its software development [13] and SAP’s use
case in the project concentrated primarily on exploring ways
to extend existing MDE tools and processes with new capa-
bilities in two dimensions, i.e. Model-Driven Performance
Engineering (MDPE) and Model-Based Testing (MBT). The
work on performance analysis (MDPE) is described below
in more detail.

The list of tools used in this case cover

• Tools developed and extended within the MODELPLEX
project:

– MDPE workbench by SAP
– IBM’s Test generator tool
– FOKUS!MBT: Test derivator tool
– MBTM: Model-Based Testing Metrics tool
– AnyLogic: commercial simulation tool
– AMW: Atlas Model Weaver tool
– ATL: Atlas Transformation Language

• Tools not part of the MODELPLEX project:

– RSA as the modelling tool
– SAP NetWeaver Business Process Management (NW

BPM) Suite
– JCOM BPM suite7

– SAP NetWeaver Developer Studio
– SAP Modelling Infrastructure (MOIN)

7 http://www.jcom1.com/.

3.1 Research method

The empirical research method was mainly an exploratory
case study of a real business scenario called “Sales Order
Management System”. Business process models of this sys-
tem were utilized to generate performance analysis models
and test models. The SAP Research team within MODEL-
PLEX worked very closely with the SAP’s internal depart-
ments that deal with the development of MDE-related tools
and technologies. These departments provided the authors
with real-use cases and were involved in the evaluation pro-
cess. The evaluators were therefore the SAP internal product
development departments. The cooperation was formalized
in five internal transfer projects in the past 3 years. These pro-
jects were meant for transferring research results into internal
SAP product development departments. The deliverables of
these transfer projects have been the basis of our evaluation
work as described in detail in [7,17]. The participants in these
projects were able to interactively apply the changes in the
business process models and observe the results. The vari-
ants of the new business processes were adapted to answer
different research questions.

3.2 Model-Driven Performance Engineering (MDPE)

Figure 2 shows the abstract architecture of the MDPE
workbench. The existing business process models and the
process history data available from the Business Process
Management tools are transformed into analysis models in an
automated fashion via a model transformation chain. These
analysis models are then fed into the Performance Analysis
Actor, which could be any analytical tool of choice such as
a simulation engine (in this case the AnyLogic tool) or an
optimization tool (e.g. FMC QE8). The analytical tool does

8 http://www.hpi.uni-potsdam.de/zorn/projekte/fmc_qe.html.

123

http://www.jcom1.com/
http://www.hpi.uni-potsdam.de/zorn/projekte/fmc_qe.html

www.manaraa.com

Where does model-driven engineering help? 623

Table 1 Transformation
complexity comparison:
transformation chain versus
monolithic approach

Transformation LOC (#FunctionCalls + #HelperCalls + #Conditions)/LOC

BPMN2UML 166 0.0542

UML2Anylogic (via TIPM and others) 3,485 0.2998

Monolithic (BPMN to AnyLogic) 1,865 0.1426

the computation and produces the results, which are brought
back and annotated on the original business models. Business
domain experts are therefore able to click a button from their
Business Process Modelling (BPM) environment, invoke an
analysis such as simulation and see the results decorated on
the business models that they are familiar with. During the
process, the following steps are performed in the following
background:

1. Business process models are annotated with perfor-
mance-related data, e.g. objectives related to execution
times or resource demands and constraints. A special
model annotation technique based on ATLAS Model
Weaver (AMW9) allows annotating proprietary models
without the need to have access to or extend their meta-
models.

2. The MDPE workbench is required to support a num-
ber of different modelling languages (for example, dif-
ferent proprietary languages used within SAP) as well
as various analysis simulation, optimization and analy-
sis tools. Therefore, an intermediate metamodel named
Tool-Independent Performance Model (TIPM) is intro-
duced in the transformation chain as an abstraction for
performance analysis tools to make the solution generic
and reusable. TIPM is a representation of the system
from the performance perspective. Besides TIPM, UML
activity diagrams are used as another intermediate model
for abstracting different Process Modelling Languages.
The first transformation is therefore always from pro-
cess models (e.g. SAP proprietary modelling languages)
to UML activity diagrams which are then transformed
into a TIPM in another transformation step.

3. The TIPM is thereafter transformed into Tool-Specific
Performance Model (TSPM) in order to be consumed by
an analytical tool of choice.

4. The TSPMs are fed into the analysis engine and the
results are collected.

5. The results are finally traced back to the original busi-
ness models by using the automatically generated trace
models from ATL HOT (Higher Order Transformations),
which is a way to generate new transformers using exist-
ing ones.

The model transformation chain was required as a measure
for modularisation, since we were required to hide com-

9 ATLAS Model Weaver; www.eclipse.org/gmt/amw/.

plexity at the design-time when a new performance analy-
sis tool or process modelling tool is integrated. For instance,
if a monolithic transformation is implemented, a transfor-
mation developer needs to learn two new concepts, namely
the process modelling language and the performance analy-
sis input format. This is normally not the case if the TIPM
is employed. Provided that the process modelling language
is already translated into the TIPM and the transformation
developer has already implemented a translation between
TIPM and another Performance Analysis Tool, only the con-
cepts of the performance analysis input need to be learnt.

This leads to the claim that the development of monolithic
transformations is more expensive in terms of the develop-
ment costs if more than one Performance Analysis Tool is
integrated with more than one Process Modelling tool.

We have measured the development costs based on the
following two metrics (see Table 1):

• The second column of Table 1 shows the number of lines
of ATL code (LOC) needed for the transformation (steps)
of the transformation chain case study for a transforma-
tion via the MDPE chain versus the comparative mono-
lithic transformation.

• In the third column of Table 1, a metric for the average
complexity for each LOC of the single delta transforma-
tion from BPMN to the UML Activity Diagrams and the
comparative monolithic transformation from BPMN to
AnyLogic is provided. This complexity metric is calcu-
lated based on the number of helper calls, conditions and
ATL-function calls per line of ATL code. This metric is
based on the function metrics to measure certain quality
attributes of model transformations proposed in [18].

If BPMN models are employed, only 166 additional lines
of low-complexity code are added (see row 2 of Table 1),
which is of significantly lower complexity than the mono-
lithic transformation (see row 4 of Table 1). Thus, low effort
is needed which is partly a result of the fact that the BPMN
language (and many other languages which are similar to
BPMN) can be easily translated to UML Activity Diagrams.
However, these numbers consider that the remaining part of
the transformation chain, e.g. the translation from Activity
Diagrams to AnyLogic via the generic TIPM is already avail-
able. The complexity of those intermediate transformation
steps is higher than the BPMN2UML transformation and
also higher than the monolithic transformation (see row 3 of
Table 1). Thus, the transformation chain only pays off when

123

www.eclipse.org/gmt/amw/

www.manaraa.com

624 P. Mohagheghi et al.

Table 2 Performance penalties of the generic four-step transformation
chain compared to the monolithic approach

Transformation Memory
footprint (Kb)

Performance
(s)

BPMN to AnyLogic via
the transformation
chain

2,274 13.6

BPMN to AnyLogic via
a monolithic
transformation

595 3.2

several process modelling tools need to be integrated with
several performance analysis tools.

The price to pay for this modularisation at the runtime
was a memory and runtime overhead. This was due to the
overhead for maintaining intermediate models, tracing, etc.
To quantify this, we did measurements on the performance
of the MDPE workbench. For instance, the time taken to
transfer data from a modelling tool to an analysis tool was
more than three times higher for the multi-step transforma-
tion chain, compared with the monolithic approach, which
involved direct transformation from a specific modelling tool
to a specific analysis tool. These times were computed for
a model describing a business process with 47 high-level
steps. The input BPMN model used 202 Kb of memory.
However, only 20 Kb of these data were behaviour specific
and were needed for the simulation. The remaining informa-
tion mainly concerned modelled rules. Additionally, 47 Kb
of data representing performance parameters were injected
into the MDPE transformation chain. The resulting 67 Kb
(20 + 47) of data were transformed with the MDPE transfor-
mation chain into an AnyLogic model, which used 528 Kb of
memory. Thus, the monolithic transformation required only
595 Kb (528 Kb + 67 Kb) of memory to serialize the input
and output models. Therefore, the memory footprint for the
chain with 2,274 Kb was significantly higher than the mono-
lithic transformation. The results are summarized in Table 2.
All transformations were implemented with ATL. For the
measurements, a computer having 2 GB of RAM and a 2 GHz
Dual Core CPU was employed.

3.3 Conclusions

The MDPE workbench enables non-intrusive integration of
sophisticated and automated performance-related decision
support into existing BPM environments. The workbench
was demonstrated to a number of actual and potential large
customers of the SAP NetWeaver BPM product. In all these
cases, the feedback was largely positive in terms of the use-
fulness of the approach. Besides this, we also experienced
drawbacks and benefits related to the various MDE tools
employed within the MDPE workbench as discussed below.

On the positive side

• Generally, we experienced that dealing with data con-
forming to a metamodel is a powerful concept for
building applications with complex data structures and
input/output languages. This is mainly caused by the
Eclipse Modelling Framework (EMF) and its code gen-
eration capabilities, reflective API, documentation, user
groups, etc.

• After a warm-up phase with the ATL language, we found
that the combination of declarative and imperative con-
cepts for defining transformations of complex data struc-
tures is an efficient approach.

• Also model weaving was straightforward for defining
links between our models. For instance, we applied AMW
to annotate additional information to the models without
polluting the metamodels. The annotations were defined
in separate models. This approach can now be applied to
annotate DSLs that do not have a profile mechanism like
UML.

On the negative side

• The MDPE workbench required an integrated use of Java
coding with ATL transformation scripts, tracing models
and weaving models. We encountered a lack of inte-
gration between these artefacts. It would, for instance,
be beneficial to be able to declare transformation rules
embedded in the Java coding and runtime. If this had
been available, we would have been significantly more
productive in implementing the MDPE workbench.

• ATL did not prove to be a very stable tool and also
required high expertise to use it. There have been addi-
tional issues when we migrated to the latest version of
the ATL (ATL 3.1.0 release candidate 4), due to changes
in the ATL libraries that are used to read the source mod-
els. This required re-coding to make it work again. The
absence of debugging support additionally made it dif-
ficult to locate errors. We are however aware of the fact
that debugging support for rule-based languages is diffi-
cult to realize as the programmer does not define an order
in which rules are executed.

• When employing modularisation concepts on our model
transformations, we missed several concepts and tools.
For instance, a systematic concept for managing model
annotations and tracing across the transformation chain
had to be investigated and implemented by ourselves.
Moreover, our implementation showed a significant run-
time footprint as described above. Related to this, we
propose two directions for future research which should
decrease both the runtime overhead of modular transfor-
mations and the need to develop such decomposed trans-
formations again and again:

123

www.manaraa.com

Where does model-driven engineering help? 625

(i) Support for transformation chains could be part
of the transformation tool and the management of
intermediate models and tracing should be done
within the framework in a performance-optimized
way.

(ii) Moreover, transformation chains at runtime can be
avoided by merging model transformations, simi-
lar to program optimization approaches like defor-
estation [19]. We explained this idea in more detail
in [8].

As a simulation engine at the end of the transformation
chain, AnyLogic tool was used. Being commercial, the tool
is quite stable and mature. However, there was a technical
integration issue because AnyLogic did not offer some of
the APIs without the GUI. Our requirement was to have the
tool running only in the background. Open source tools were
therefore added as additional analysis engines apart from
AnyLogic.

Apart from tool issues, there has been one important con-
cern for the MDPE approach itself, which is its reliance on
the existing historical data about the business processes and
the business process models themselves. Especially, when
dealing with human-centric business processes, we identi-
fied that the available historical business process data were
sometimes of poor quality. This was either due to the limited
amount of data available for certain activities in the process
or due to high variance in the data for certain process activi-
ties processed by humans. In order to address this issue, we
extended the MDPE workbench with an additional tool that
analyses and corrects the data before simulation.

We also performed research on MBT which covered trans-
forming models from proprietary domain-specific languages
of SAP into UML with Java annotations and UML-2 Testing
Profile (U2TP10). Test cases were generated using two test
generators developed within MODELPLEX and transformed
back into SAP internal test case format. The integration of
MDPE and MBT workbenches with SAP tools has been eval-
uated as successful. The research prototype is currently being
productized into an industry solution and is considered for
inclusion in a future version of SAP BPM tool. The next steps
are to address issues like incorporating exceptions in business
processes and dealing with the high variance in performance
data available from business logs.

4 Telefónica: network modelling in telecommunication
domain

Telefónica’s case in MODELPLEX used the CPE Manage-
ment and Configuration System (CMCS), where CPE stands
for Customer Premise Equipment. The aim of this system

10 http://utp.omg.org/.

is the automated and remote (when possible) configuration
and monitoring of the network devices necessary for broad-
band service provisioning in Telefónica. The case in MOD-
ELPLEX is considered as complex especially regarding size
and heterogeneity. Regarding size, we can mention that there
can be thousands of configurable elements in a typical net-
work device and thousands of network devices are monitored.
The system is heterogeneous since there will be multiple ver-
sions of the CMCS system that must be integrated in different
Operational Support Systems (OSS), with different services
and features offered to the customers.

One of Telefónica’s research focuses in MODELPLEX
was the development of a DSML and related tools for mod-
elling network devices and services involved, so that faster
service development and deployment is possible, by substi-
tuting the current practice of textual service specification with
a model-centric approach. This case is described in detail
below. Before that, the tools used in this case are listed below:

• Tools developed or extended within the MODELPLEX
project:

– Telecom Service DSL: developed as part of this case
– Reuseware composition framework: used for model

composition
– EuGENia: used for generating GMF editors
– EVL: Epsilon Verification Language
– ATL: ATLAS Transformation Language for model-

to-model transformation
– FOKUS!MBT: Test derivator tool

• Tools not part of the MODELPLEX project:

– EMF: Eclipse modelling and metamodelling frame-
work

– GMF: Eclipse framework and tooling for DSL defi-
nition

– RSA, Papyrus and Topcased: UML2 modelling tools

4.1 Research method

Our research was mostly performed as case studies with com-
parison between MDE and other approaches. Additionally,
we conducted several internal surveys to collect the opinion
of the developers participating in case studies about the new
technologies and their perception of the usefulness of MDE
in general. The development of solutions has been iterative
and is best described as research-in-progress.

4.2 The telecom DSL prototype

We started, early in the project, working with project partner
Xactium11 in the development of a first prototype and proof

11 Xactium; http://www.xactium.com.

123

http://utp.omg.org/
http://www.xactium.com

www.manaraa.com

626 P. Mohagheghi et al.

Fig. 3 First proof of concept of the CIM-based telecom DSL tool

of concept DSML tool using the Eclipse GMF. Experiences
with developing this DSML are discussed in detail in [3].
A metamodel based on Common Information Model (CIM)12

was used in this development. CIM is a recognized industry
standard and it is widely used in instrumentation software
and many off-the-shelf products for network management.
The overall GUI of the first prototype can be seen in Fig. 3.

The evaluation of this first tool by several engineers in
the CMCS development group was unanimous. The work
was deemed as very promising and the selection of CIM as
the underlying metamodel was considered as a very pertinent
solution. However, some critical areas for improvement were
also identified:

• The need for a much more powerful GUI that allows tele-
com domain experts to efficiently create domain-specific
models with a huge number of meta-classes available
(CIM has more than 1,500 elements). For this reason we
decided to scrap the first prototype and design a new, more
powerful, GUI.

12 Common Information Model is a standard developed by the Distrib-
uted Management Task Force; http://www.dmtf.org/standards/cim/.

• The need for modelling at a higher level of abstraction and
developing hierarchical models triggered using model
composition tools such as the Reuseware composition
framework developed in MODELPLEX.

The most negative aspect of this prototype DSML tooling has
been the difficulty of modifications. The telecommunication
domain is very dynamic and this poses a big challenge in
keeping the tool updated. This aspect of the tool (being able
to keep up with metamodel variability) is not satisfactory in
the current implementation. GMF lacks the necessary charac-
teristics to cope with such a quick development need. Every
time the metamodel changed, which happened several times
during the development of the tool, a lot of manual work
was needed to update the tool. However, a new framework
developed in MODELPLEX called EuGENia facilitates gen-
erating GMF editors. EuGENia automatically generates the
.gmfgraph, .gmftool and .gmfmap models needed to imple-
ment a GMF editor from a single annotated Ecore metamodel
and thus hides the complexity of working with GMF. Another
problem is that, after the new metamodel and tool are fin-
ished, there is still a lot of effort involved in making the old
models usable with the new tool.

123

http://www.dmtf.org/standards/cim/

www.manaraa.com

Where does model-driven engineering help? 627

Fig. 4 Manual fragment
identification by a domain expert
over a simple domain model

The developed DSML was later extended in several ways.
Firstly, it was integrated with the verification language EVL
for the incremental checking of the correctness of the mod-
els being created. EVL was evaluated by our experts as very
beneficial in terms of usability, as it allows the incremental
checking for correctness of the models while being created.
A set of rules from our domain was documented and then
implemented in EVL. Where appropriate, quick-fixes were
implemented as well. Second, to support modelling at higher
levels of abstraction than single network elements, a compo-
sition system was developed using the Reuseware tool [10].
This multi-layer DSL approach was based on the domain con-
cepts identified in the previous work. At the higher levels of
abstraction, model fragments with specific domain meaning
are composed. These identified fragments, together with the
proper semantic information are then stored in a fragment
repository where they can later be searched and reused in
other models. One example of this process of fragment identi-
fication, done by our in-house domain experts, can be seen in
Fig. 4. The semantic tags, or “facets”, allow the characterisa-
tion of the fragments in the repository regarding the structure
of the fragment, viewpoint (e.g. physical, logical, software,
etc.), or domain properties (e.g. network protocols supported,
etc.). In terms of graphical customization, we worked on hid-
ing the parts of the composition program that are not rele-
vant to the modeller (the user) and in providing graphical

representations for the different fragments that are stored in
the fragment repository.

An alternative approach to handle modelling at several
levels of abstraction would be to develop multiple DSLs and
define transformations between them, which could be simpler
for the end-user since there is a fixed level of abstraction. The
composition approach is, on the other hand, more flexible but
the recursion levels of compositions can get too complex. To
better restrict these options, we proposed an iterative process
for defining the multi-layered DSML environment, as also
described in [16].

Other than modelling, the purpose of our DSL was
to generate network device configuration files out of our
domain-specific models. We experimented with the ATL
transformation language and for comparison we developed
the same transformation chain using Java. The idea was
to compare both approaches in the terms of ease of use,
performance, readability of the code and ease of learning.
A team of eight developers was involved in the evaluation.
At the beginning, they preferred Java because of their pre-
vious knowledge of the language. By the second evaluation,
most of them recognised that ATL had an advantage in the
ease of use and the readability of the scripts, even though
the learning curve for the language was deemed as high. The
performance of ATL was acceptable even for large models.
The work with ATL was not free from problems, though. For

123

www.manaraa.com

628 P. Mohagheghi et al.

example, the inability of ATL to manage metamodels con-
tained in more than one Ecore file forced us to implement
some workarounds.

4.3 Conclusions

We performed extensive work on model-based testing as well
using the Fraunhofer FOKUS test derivator tool
FOKUS!MBT and TTCN-3 test execution environment
(TTWorkbench, a commercial tool from Testing Technolo-
gies). The behaviour models best suited to our purpose were
found to be UML state charts. However, the test derivator tool
did not have adequate support for generating test cases from
UML2 state charts and was therefore extended in MODEL-
PLEX. The Fraunhofer partner also had to customize their
tool for different UML2 modelling tools with non-compli-
ant XMI outputs. We experimented with different modelling
tools and we chose RSA in the end. Our main requirement
for the evaluation was the overall productivity of the testing
process so that less effort is spent on test scripting, while test
coverage is satisfactory. The initial results were considered
as satisfactory but only after the extensive work on model-
ling and tool customization. Since test cases and TTCN-3 test
scripts were automatically generated from the models both
goals can be achieved: the user has a good control of test
coverage via the test models and less effort is spent on test
scripting because the test scripts are automatically generated
and not written by hand.

We had both positive and negative experiences with the
tools. On the positive side, most tools that we evaluated (such
as ATL and Reuseware) are close to maturity and are basic
and helpful technologies that provide a good support to very
diverse MDE approaches. On the negative side

• We experienced that a high level of expertise is required
for developing editors, customizing tools and developing
workarounds. In this project, we received direct help from
tool vendors.

• We also observed that no single modelling tool could
serve all of our purposes. In our case, we decided to
use IBM’s RSA as our UML2 modelling tool, which
is a licensed tool that covered most of the functionality
for our case. Early models created in Papyrus and some
other tools had to be re-done from scratch because of the
issues with exporting/importing to XMI between tools.
Diagrammatic information is not preserved from one tool
to another and there is incomplete implementation of the
UML2 specification in most tools.

Our goal for participating in the project has been to study
whether the MDE approach can be useful in our context with
the current state of the art and if yes, in which scenarios. With
the current state of the art, we have found some interesting

uses for the approach, like our experimentation with hier-
archical DSLs and our work on model-based testing. One
observed benefit is that models can act as documentation and
no extra documentation is needed to understand the modelled
networks.

The DSL development work is considered as very prom-
ising. However, we have reached the conclusion that DSLs
should be smaller to be practical. Since CIM metamodel con-
tains over 1,500 concepts, a reduced subset relevant for the
case was used in the first implementation, consisting of more
than 200 concepts. There are also a large number of relations
in the CIM metamodel. We applied techniques such as mod-
elling concepts as nodes and edges in a graph and reducing
the number of palette elements by grouping classes. For the
future, either the relevant subset should be reduced even more
or the grouping should be enhanced. As also emphasized in
[12], a language with too many concepts creates problems
during language deployment and use.

We have, however, our doubts about whether MDE can
be a complete alternative to a more traditional development
paradigm because of the state of the tools that create several
obstacles in applying the approach. Problems with custom-
ization and interoperability between modelling tools were
discussed above. Additionally, we observed that traceability
in the life cycle is difficult to manage when putting together
several tools and MODELPLEX could not deliver a satisfac-
tory solution for a model repository. In conclusion, we have
observed many benefits of the MDE approach such as

• Domain models are easier to understand for those who
deal with the configuration of nodes;

• We can achieve reuse and generate documentation from
models;

• Model-based testing has the potential to save effort.

However, developing a MDE tool chain requires high exper-
tise and an investment of effort since no platform works “out-
of-the-box”. It will pay off if we can convince the company
for large-scale reuse of the solutions, which requires more
experimentation and increasing our expertise, in addition to
more stable and interoperable tools.

5 WesternGeco: model-based simulation and testing

WesternGeco (WGO) works in the area of Oil and Gas
Exploration, offering advanced seismic surveying services.
The aim of seismic surveying is data acquisition to pro-
duce images of geological features and their structure
below the surface of the earth. The system under focus in
MODELPLEX was the onboard Spread Management Sys-
tem, which will boot up, control and monitor the spread

123

www.manaraa.com

Where does model-driven engineering help? 629

Define
architecture

Verify
architecture

Develop

Define requirements: Precise
Define high-level architecture- CCDL
Link requirements to architecture- TraMDE

Verify architectural options- RelSIM
Subsystem design
Link design to high-level architecture

Detailed design- UML / EquipLang
Design tests- UML / DSL
Test code generation- MOFScript
Link code to design- MOFScript
Simulation- AnyLogic

Fig. 5 MDE development process and tools in the WGO case

instrumentation. The spread instrumentation is a complex
network of distributed computers, various devices and sen-
sor nodes. The system is used to perform seismic surveys at
sea in order to find oil or gas beneath the sub-sea surface.
The case in MODELPLEX is considered as complex, espe-
cially regarding size and distribution. The system will contain
more than 1,000 distributed computers running embedded
Linux. The data-rate back to the onboard instrument-room
will be more than 200 MB/s, and the onboard control and
processing system will contain several hundreds of cluster-
nodes.

In order to secure quality at the right cost for such com-
plex systems, there are two key areas where MDE can make
a significant contribution:

(a) It is very important that the architecture of the system
(network topology and redundancy) is correct before the
system is put into mass-production. Developing archi-
tectural models and simulating them will reduce the risk
of making wrong design decisions.

(b) Embedded systems contain both hardware and soft-
ware. In order to avoid forcing software development
to wait until the hardware is available for testing, and
also because a test setup involving all the real hardware
will be very costly, it is important to be able to test the
software using hardware emulators. An MDE approach
based on modelling the external hardware and using the
generated code in testing is expected to produce more
reliable tests than hand-coding these tests.

Figure 5 below gives a first cut of the MDE process that
supports the two goals described above. The WGO tool suite
contained the following tools:

• Tools developed and extended within the MODELPLEX
project:

– EuGENia: GMF front-end
– MOFScript: model to text transformation tool
– RelSIM: DSL for reliability modelling and transfor-

mation to AnyLogic developed by WGO
– EquipLang: DSL/UML profile for black-box streamer

testing developed by WGO
– CCDL: DSL/UML profile for architecture modelling

developed by WGO
– AnyLogic: simulation tool
– TraMDE Traceability framework and plug-in for Pre-

cise for requirement to model traceability

• Tools not part of the MODELPLEX project:

– Eclipse tool suite framework, EMF and GMF
– Papyrus and Together Architect: modelling tools
– Precise: requirements management tool developed by

WGO

To model software architecture of the spread manage-
ment system, an architectural DSL was developed (CCDL:
Connector Component Description Language). Architectural
modelling is supported by the EuGENia tool, which facili-
tates developing a DSL in GMF. Models developed in this
DSL replace the PowerPoint slides of the system architecture
that were used before. A key feature of this DSL is the support
for drilling down from high-level abstract models into more
detailed models, for example to a UML model previously
developed. Furthermore, to support simulation of architec-
tural options, a DSL for reliability simulation of the seismic
spread equipment was developed (RelSIM) using AnyLogic
simulation tool modelling capabilities.

Regarding point (b) above, to ensure that the software is
not blocked waiting for the hardware to finish, it is impor-
tant to develop simulators that emulate the hardware. A DSL
for modelling the hardware was developed (EquipLang), and
code generators written in MOFScript are used to generate
code for the hardware emulators used in the black-box test-
ing of the system under development. We consider this as a
successful case of applying MDE to reduce risks in software
development and improve the quality of testing. EquipLang
was both developed as a DSL and a UML profile for the same
domain and we compare modelling and generating code with
these approaches in the next section.

The traceability tool TraMDE developed in MODEL-
PLEX is the glue that binds together the different models
to one another (from requirements to high-level architecture
models and to detailed design models) and to the code.

5.1 Research method

In previous research projects, WGO has created UML pro-
files for modelling and code generation for a defined plat-
form. Experience has shown that code generation scripts

123

www.manaraa.com

630 P. Mohagheghi et al.

Fig. 6 A spread context model developed by using the EquipLang DSL

become difficult to write due to the complex metamodel of
UML. An argument for using a DSL is that things get simpler
as the language is tailored to the usage. We performed there-
fore a comparative study to answer the following questions:
first, how easy is it to define a relevant profile in UML using
the Papyrus modelling tool versus developing a DSL using
Eclipse GMF? Second, how easy is it to write a code gener-
ator based on different models? The comparisons here were
performed by the team involved in the development of these
options.

Regarding developing hardware emulators, simulators
were hand-written first and evaluated for correctness by
experts. Then code generation scripts were written for gener-
ating simulators from the models. The generated simulators
were compared with ones that have been hand-written to
evaluate their completeness.

5.2 Comparing developing a DSL with a UML profile

Regarding tooling, developing UML profiles is well sup-
ported by several modelling tools. We used Papyrus since
it is free and allows experimentation at low cost. For devel-
oping the DSL, we used Eclipse GMF that was found to
be quite complex. Especially, the maturity and intuitiveness
of the GMF dashboard are not acceptable. There are two
tools developed in MODELPLEX that can be used to sim-
plify the work with GMF: EuGENia and EMFText. Using the
EuGENia plug-in, the EMF metamodel can be annotated with
GMF tags to simplify the generation of the GMF-based tool-
ing. EMFText is another Eclipse plug-in that allows defining
text syntax for languages described by an Ecore metamodel.
Figure 6 shows the editor of the developed DSL for modelling
the hardware.

123

www.manaraa.com

Where does model-driven engineering help? 631

Fig. 7 Streamer context metamodel for the EMFText approach

The main challenge of developing a UML profile is devel-
oping a fit for the purpose profile and applying it to the UML
language. The UML language in itself is very big and lim-
iting the scope is a challenge. However, the complexity of
developing a good DSL should not be underestimated either.
Finding the right level of abstraction is not easy and we had
to go several rounds, from quite low level to higher level.
The lesson learnt here was that the DSL should be at a high
level of abstraction; otherwise, you risk reinventing UML.
The advantage is that creating the concrete model using a
DSL-based editor is much simpler than creating the model
using a UML profile since a DSL constrains modelling to
those concepts that are needed.

The MOFScript tool was used to develop code generators
in both approaches. Writing the code generators were found
to be simpler and faster with the DSL since the metamodel
did not have the same complexity as the UML profile. We
did not collect any metrics on the ease of developing genera-
tors, and the evaluation is based on the opinions of the team
involved in the research.

Based on our experience with all the problems using GMF
to create DSL tooling, we also tried a third solution using the
EMFText tool. The metamodel is pictured in Fig. 7. The tool
generates a textual concrete syntax that is depicted in Fig. 8.
The language itself is small and easy to use and the code gen-
eration with MOFScript was simpler than for UML profiles.

5.3 Testing using simulator generation

When developing systems the project teams typically design
and develop simulators in place of the hardware or other
software that is either not ready at the time or incon-
venient to interface during the development phase. These
simulators are used to test the software under develop-
ment. This test approach implies to develop a Context
model of the external system (in this case the streamer
instrumentation) from which we can generate hardware
simulators/emulators to test our system. Our approach
was to develop a context model comparing several tools
and methods. The code generation was done with MOF-
Script.

Experiences regarding developing a DSL versus a UML
profile were discussed before. An example model devel-
oped in the SpreadViewer tool based on the EquipLang
is depicted in Fig. 9, which visualizes the state and con-
dition of the streamer hardware. From this tool we can
interactively simulate the failure of various instruments and
cable cuts and use them for the black-box testing of the
system.

The result of this work is still in an experimental phase,
but we found that simulating the hardware using models is
both feasible and useful. We are therefore following the work
in another research project.

123

www.manaraa.com

632 P. Mohagheghi et al.

Fig. 8 Concrete textual streamer model based on the EMFText approach

Fig. 9 SpreadViewer visualizing the state of the different instruments in different colours

5.4 Conclusions

We found the tools applied in our research mostly stable and
mature:

• AnyLogic, which is a commercial tool, is a complete plat-
form for discrete event- and agent-based simulation and
based on MODELPLEX experience, it was introduced
and successfully used in WGO in three different inter-

nal projects. The only trade-off is the learning curve for
AnyLogic, which is a bit steep when simulating complex
systems. However, it is worthwhile for complex systems.

• We have been using the MOFScript tool for generating
code from models for more than 6 years in different pro-
jects and find it useful and stable.

• We also had a positive experience with combining TraM-
DE and our requirements tool, which allows tracing
requirements to models.

123

www.manaraa.com

Where does model-driven engineering help? 633

• The overall experience is that Eclipse serves well as
an integration platform. Talking about usability, GMF
tooling showed to be more complex than expected.
Using EuGENia and EMFText simplified the genera-
tion of DSLs, but the total process is still complex.
MODELPLEX tools such as EMFText and EuGENia
reduce the complexity of working with the Eclipse envi-
ronment.

Regarding how to apply MDE, we performed an exper-
iment by developing two parallel solutions to the spread-
context model. The evaluation was generally done by experts
involved in the research. The work was done in iterations and
with many trials and failures and is regarded as exploratory.
The experiment showed that

• The DSL leaves the end-modeller with a simpler
modelling language, thereby supporting a faster model
development. Also, the writing of the code generators was
simpler and faster with the DSL model. The complexity
lies in using GMF in developing the DSL tooling.

• On the other hand, using a standard language such as
UML or developing a UML profile has promises and pit-
falls as well. There are several tools that support UML and
UML profile development and developers are more famil-
iar with UML tools. However, as pointed out by [5], the
UML 2.0 profile mechanism does not provide a means for
precisely defining semantics associated with extensions.
For this reason, developers cannot use profiles in their
current form to develop domain-specific UML variants
that support the formal model manipulations required in
an MDE environment.

Regarding the MDE approach, we found applying it very
useful for simulation and testing purposes and have already
started using it. We also performed modelling for architec-
tural analysis. However, a full MDE approach, i.e. model-
centric rather than model-assisted development, requires
tools that specially support iterative software development
with features such as evolvable metamodels and configura-
tion management of models. Furthermore, in our view, the
development approach should support what we call a model-
virtual-machine (MVM), i.e. the execution and debugging
has to happen at the model level. Today’s practice with code
generation does not hide the complexity of the underlying
layers. The total complexity of system development therefore
increases without an end-to-end MDE solution, especially
when legacy code must co-exist with the models and the
generated code. Until further technological advances allow
the application of MDE throughout the entire development
lifecycle, we will selectively apply it in the areas we found
it useful.

6 Summarizing the experiences

In this section we combine lessons learnt in the three cases
to identify areas where MDE is considered as beneficial and
the main challenges.

6.1 Experiences regarding the MDE Approach

Industry partners in MODELPLEX have performed exten-
sive evaluations of MDE in their contexts by using solutions
developed in MODELPLEX as well as internal and external
tools. Expert judgements, quantitative data on aspects such
as performance, and interviewing developers and users have
been the major sources of empirical data. The experiences of
MODELPLEX partners show that the MDE approach was
considered especially useful for:

(a) Abstraction and hiding details when a complex system
of multiple systems is being developed, modelling is
especially useful to break down the complex system
into several layers or from different viewpoints. MDE
techniques such as model composition and traceability
between models are required to manage the complexity
of developing complex and large models. Telefónica
and WGO have taken advantage of abstraction tech-
niques and composition tools in developing their com-
plex systems.

(b) Communicating with non-technical staff developing
domain-specific modelling languages or UML profiles
improves communication with domain experts and busi-
ness analysts by hiding non-relevant technical details.
Several cases in MODELPLEX developed DSMLs
or UML profiles for improving communication: in
SAP with business process analysts, in Telefónica with
domain experts in charge of telecommunication service
specification and in WGO with software architects and
security experts.

(c) Simulation and model-based execution a system must
be analysed in the design phase in order to evaluate and
improve the quality of its architecture, design or com-
positions, or to evaluate its performance. All of these
cases need executable models and simulation facilities.
In SAP, the MDPE workbench was developed for deci-
sion support for business experts. The MPDE work-
bench was customised by another industrial partner in
the context of collaborative decision-making in the air-
port crisis management system. In WGO, hardware was
simulated in order to test the system for various instru-
ment failures. The validity of simulation results in both
cases is however highly dependent on the quality of
input data.

(d) Model-based testing in addition to the above three
scenarios where MDE has proven to be useful,

123

www.manaraa.com

634 P. Mohagheghi et al.

model-based testing has the potential to save effort
and improve the testing process. WGO is already using
model-based testing for black-box testing of a system
under development by emulating the hardware. SAP and
Telefónica also experimented with model-based testing
and verification at the model level. More research is
needed to develop mature tools in this area.

The companies in the project invested in developing DSLs
that capture their domain concepts and transform these into
code. The aspect of the MDE approach that deals with mod-
elling Platform-Independent Models (PIMs) and then trans-
forming these into Platform-Specific Models (PSMs) was not
found to be relevant in the cases.

Our findings suggest that the participants in the research
found MDE as useful for solving some problems of devel-
oping complex software systems while the methodology and
tools are not generally perceived as easy to use. Both aspects
however improve with more usage and companies with more
experience on MDE such as SAP found it more useful and
easy to use. The compatibility of MODELPLEX tools with
one another was not considered as a problem while compati-
bility with external tools created some problems, for example
for XMI import/export. One lesson learnt in the project was
to develop solutions around industry accepted platforms such
as Eclipse and adapt other tools to these environments.

6.2 Relation to the state of the art

In order to evaluate the state of the art regarding applying
MDE in industry, we performed a systematic review in 2008
that covered papers published from 2000 to 2007 in some
major journals and events related to MDE [14]. This review
discovered 25 papers reporting experiences from different
domains, although with very little quantitative data. Regard-
ing motivations for applying MDE, the papers discussed:

(a) Increased productivity and shortened development time.
(b) Improved software quality by improving the quality of

the generated code, improving the quality of interme-
diate models, earlier detection of bugs by model-based
simulation and testing.

(c) Automation by generating code and other artefacts.
(d) Provision of a common framework for software devel-

opment across the company and phases of the lifecycle.
(e) Maintenance and evolution concerns such as main-

taining the architecture consistency from analysis to
implementation and developing PIMs that have long
life-span.

(f) Improved communication and information sharing
among stakeholders.

The points on the top of the list are most frequently mentioned
in the papers. In the MODELPLEX research it was not pos-
sible to collect enough quantitative data to verify benefits
regarding productivity or quality improvements. Small-scale
experiments would not generate valid data and observing
these benefits would have required long-term follow up.
The observed benefits in the industrial cases are related to
model-based simulation and testing, improving maintenance
and evolution by abstraction, and improved communication.
However, these benefits are related to productivity and soft-
ware quality. For example, late detection of performance
issues increases the cost of fixing while possibly decreasing
the quality of software due to workarounds. Model-based
testing and simulation improves the quality of software and
saves effort by detecting defects earlier in the development
process.

In another MDE adoption study, the costs and benefits of
MDE in the car industry were studied [11]. In this study, 12
interviews were conducted with car producers, their suppliers
and consulting companies. As the motivation to use MDE, the
following were mentioned: cost savings in the development,
the fear of missing the next generation development tech-
nology, competitive pressure, and the experience that many
innovative functions can only be developed via model-based
technologies. The companies hoped to achieve the following
advantages because of MDE: higher degree of automation,
possibility of detecting errors earlier, better communication
with colleagues and reduced effort for reusing functions in
other car lines. Negative experiences were reported to be high
dependence on tool vendors, bugs in the tools and the need
for process redesign. Some of the interviewees also suggested
that they cannot trust code generators to produce safety-crit-
ical and efficient code with the same quality as hand-written
code, while others did not agree. Some of the advantages
listed above are in-line with what we have observed in the
project, especially regarding earlier detection of errors and
better communication. The fear of missing new technology
and hoping that MDE will solve some of the challenges in
developing complex software systems have been motivations
for participating in the research.

Single studies have also been published since 2007, which
report on the motivations and benefits of applying the MDE
paradigm, especially in the series of workshops on domain
engineering.13 Others have applied formal modelling tech-
niques, such as in Ferrari et al. [4], who have applied formal
model-based development using Simulink/Stateflow-based
development in railway signalling. They estimate that a
developer spends 30% more time on modelling than on cod-
ing. Nevertheless, this greater effort is balanced by the fact
that notable cost reductions are achieved in terms of verifi-
cation activities (with a time reduction of about 70%). We

13 See http://domainengineering.org/ and http://www.dsmforum.org/.

123

http://domainengineering.org/
http://www.dsmforum.org/

www.manaraa.com

Where does model-driven engineering help? 635

did not collect data on effort to confirm this assumption but
one motivation for applying model-based testing in MOD-
ELPLEX has been to save effort by generating test cases and
reusing them. Ferrari et al. considered that their approach still
needs improvement to ensure consistency of models at dif-
ferent abstraction layers which is also regarded as a challenge
in MODELPLEX and is partly addressed by implementing
traceability in transformations.

Experiences on applying MDE in the domain of indus-
trial processes are discussed in [9], which describes the
development of a UML profile for this domain. The authors
note that the overhead of developing and customizing the
transformation is worthwhile, especially in large projects,
which can benefit from automating routine work. There is a
great amount of reuse in this domain where thousands of
objects are listed to develop control diagrams. They also
report drawbacks, for example compatibility between dif-
ferent modelling viewpoints and models at different granu-
larity levels. Also, the authors warn against putting too much
effort on platform-independent modelling in this domain.
The biggest challenge is the adequacy of modelling concepts,
which shows that the domain models may change, as in the
Telefónica case. The authors, however, emphasize that a pos-
sible advantage of MDE is integrating it with model-based
simulation, which was also a conclusion of our cases.

6.3 Challenges

In the road toward project objectives, numerous challenges
were identified:

• Coping with changes in metamodels and standards, both
for UML and domain models. Current tools and develop-
ment environments cannot manage the evolution of DSLs,
profiles or models.

• Getting the tools to interact properly with one another and
anything outside the domain, having a different underly-
ing syntax to that of other languages.

• Managing all the artefacts, where models (from different
viewpoints and at different abstraction levels) and trans-
formations are added as artefacts to the software develop-
ment process and the complexity of managing artefacts
has increased considerably. Ideally, it should be enough to
operate at the level of models in an MDE approach. Since
in practice this is not yet possible, the complexity of soft-
ware development in this aspect has increased. Taking
into account that everything evolves as well, the migra-
tion of models is a concern. Tools for managing models
and metamodels and traceability are of great interest.

• Developing an MDE environment requires high skill and
expertise in domain concepts, language engineering, tool
development, standards and transformations. Tools that

facilitate this transition, such as domain ontologies and
DSL development frameworks, are of value.

• The participants in this study are also concerned with the
scalability of the solutions and applying them to large-
scale projects where hundreds of developers are involved
and it should be possible to perform iterative develop-
ment. Effective model management tools are required to
support the MDE approach in the development lifecycle
of large-scale projects.

Some of the aforementioned challenges are introduced by
the MDE approach and require suitable solutions. Models,
metamodels and transformations are artefacts that should be
managed, evolved and reused. Model semantics and manag-
ing relations between models are also important challenges
in MDE. Other challenges are tool related such as incomplete
implementations of standards, poor usability and the lack of
documentation.

We would also like to emphasize challenges regarding col-
lecting empirical data in research projects. The evaluation
method here combined quantitative with qualitative assess-
ment and observations with perceptions. While we hoped to
collect more quantitative data, the nature of iterative devel-
opment and continuous improvement of tools did not allow
for the collection of meaningful data on effort spent on, for
example, modelling or customization of tools. Comparing
MDE with other development methods requires reliable base-
line data, which is often missing. We also applied the Tech-
nology Acceptance Model [2] to summarize the developers’
perceptions regarding MDE and used a questionnaire to col-
lect opinions regarding specific tools and techniques. The
detailed results of this study are going to be published in a
separate paper while some results are presented in Sect. 6.1.

An important area for future empirical research is to eval-
uate the cost-effectiveness and Return-On-Investment (ROI)
of MDE by performing more longitudinal case studies. ROI
in our experience is related to the reuse of domain models,
transformations, other artefacts and tools in several projects.

7 Final conclusions

Model-driven engineering has not been an out-of-the-box
solution for any of the cases discussed in this paper. Apply-
ing the approach required developing metamodels and tools
for the domain, customizing generic tools and integrating
tools into a tool chain. This fact is both the strength and the
weakness of the MDE approach: developing the environment
requires high expertise and is costly, which does not pay off
for small or single projects. However, once such a develop-
ment environment is created, it has the potential to be easier
to use than generic modelling tools and to save effort by
automation. Although productivity improvements could not

123

www.manaraa.com

636 P. Mohagheghi et al.

be measured in our cases, the potential exists based on the
feedback from developers.

The cases presented in this paper describe how MDE was
applied in three industrial cases using state-of-the-art tools.
In these cases, MDE was evaluated to be especially useful
for the purposes of simulation and execution, abstraction,
communication and model-based testing and even more so
given the possibility to reuse solutions in multiple projects.

The project identified several challenges and open issues.
Better support for DSL development is a must before domain-
specific solutions are widely applied. Tools must be improved
regarding usability, multi-user support, versioning of models,
conflict detection and resolution and diff/merge possibilities.
All of these features are required for developing complex
software systems.

In our opinion, the main question that an organization
has to ask itself is “Where do I need MDE?” Companies
may be reluctant to change their development processes and
tools. However, if specific areas are identified where MDE
can help and the cost of the transition can be justified by
reducing risks or by reuse of solutions in multiple projects,
the transition may happen gradually.

Acknowledgments This work was supported by MODELPLEX pro-
ject (IST-FP6-2006 Contract No. 34081), co-funded by the European
Commission as part of the sixth Framework Program (FP6). Alin
Stefanescu was also supported by the Romanian research grant CNCS-
UEFISCDI no. 7/05.08.2010.

Appendix

In this appendix, tools developed or extended within the
MODELPLEX project are briefly presented. Tools in each
technological area are listed in alphabetic order. Some of the
tools do not have a website but contact information may be
found on the MODELPLEX website (see tools section there).

Model engineering

ATL: ATLAS Transformation Language

(http://www.eclipse.org/atl/) ATL is a Model-to-Model
transformation language and toolkit initiated from research in
INRIA. It is widely adopted and is part of M2M Eclipse
project. It was extended in MODELPLEX with traceability
support.

AMW: ATLAS Model Weaver

(http://www.eclipse.org/gmt/amw/) AMW is a tool for estab-
lishing relationships (i.e. links) between models and is part of
the same environment as ATL. The links are stored in a model,
called weaving model, conforming to a weaving metamod-

el. These links may be used, e.g. in metamodel comparison,
traceability, and model matching.

DSL evaluation framework

(http://quality-mde.org/) It is a framework to evaluate the
quality of DSLs from different viewpoints, developed by
SINTEF as part of research on quality of models in MDE.
Publications are available on the website. Several DSLs were
developed in MODELPLEX and we used the framework to
evaluate a few of them.

Epsilon environment and languages

(http://www.eclipse.org/gmt/epsilon/) Epsilon is a family of
languages which may be used to interact with EMF models
to perform common MDE tasks. The environment is devel-
oped by York University and contains several tools such
as ECL—Epsilon Comparison Language, EML—Epsilon
Merging Language and EVL—Epsilon Validation language,
all available as Eclipse plug-ins and free to download.

EMFText

(http://www.emftext.org/) EMFText is a tool for defining a
textual syntax for modelling languages, for example textual
representations of EMF models. It can be used together with
Reuseware on textual languages. It is developed by Dresden
University of Technology as an Eclipse plug-in and it is free
to download.

EuGENia tool for developing GMF editors

(http://www.eclipse.org/gmt/epsilon/doc/articles/eugenia-
gmf-tutorial/) Implementing a visual editor using the built-
in GMF facilities is a particularly complex and error-prone
task. EuGENia is a tool that automatically generates the .gmf-
graph, .gmftool and .gmfmap models needed to implement a
GMF editor from a single annotated Ecore metamodel. The
tool is part of the Epsilon environment.

MoDisco: model discovery

(http://www.eclipse.org/MoDisco/) MoDisco is an Eclipse
GMT component and is composed of a set of model-driven
reverse engineering tools, named discoverers. INRIA and
SODIFRANCE were partners in MODELPLEX who devel-
oped the platform.

MOFScript

(http://www.eclipse.org/gmt/mofscript/) MOFScript is a tool
for model-to-text transformations, e.g. to support generation
of implementation code or documentation from models. The

123

http://www.eclipse.org/atl/
http://www.eclipse.org/gmt/amw/
http://quality-mde.org/
http://www.eclipse.org/gmt/epsilon/
http://www.emftext.org/
http://www.eclipse.org/gmt/epsilon/doc/articles/eugenia-gmf-tutorial/
http://www.eclipse.org/gmt/epsilon/doc/articles/eugenia-gmf-tutorial/
http://www.eclipse.org/MoDisco/
http://www.eclipse.org/gmt/mofscript/

www.manaraa.com

Where does model-driven engineering help? 637

MOFScript tool is based on EMF and Ecore. The tool was
developed within the MODELWARE project by SINTEF. It
was later extended in MODELPLEX to achieve compliance
to OMG MOF Model to Text (M2T) standard and traceability
support during transformations. The traces can be analysed
by the TraMDE tool. It as an Eclipse plug-in and it is free to
download.

MontiCore

(http://www.monticore.de/) The tool can be used for devel-
oping compositional textual domain specific languages. Lan-
guages and accompanying tools can be developed separately
and combined at runtime. During this combination, the
semantics and the functionality of the partial languages and
tools are preserved. MontiCore is available as an OSTP
(Online Software Transformation Platform) service while the
Eclipse platform is chosen as a target for editor generation.
It is developed by RWTH Aachen University.

Reuseware composition framework

(http://www.reuseware.org/index.php/Reuseware) Reusew-
are is a framework for creating composition systems for
existing or newly developed modelling languages. The users
are able to compose model elements, compose diagrams,
define reusable facets and even modify composed models and
reflect back changes to the fragments. The tool was used in
MODELPLEX with Eclipse GMF, TOPCASED and Ratio-
nal Software Architect (RSA), as well as with textual mod-
elling languages. It is developed by Dresden University of
Technology as an Eclipse plug-in and it is free to download.

System Grokker

(https://www.research.ibm.com/haifa/projects/services/grok
king/) The tool is a model-based software architect assis-
tance technology developed by IBM Haifa Research Lab to
support the incremental and iterative user-driven understand-
ing, validation, and evolution of complex software systems
through higher levels of abstraction.

TraMDE: trace analysis tool

(http://www.modelbased.net/modelplex/traceability/) TraM-
DE Trace Analyser is a tool capable of storing trace informa-
tion as a model. Traces can be established both manually by
the user from tools like Papyrus UML and GMF-based edi-
tors and automatically by tools like the MOFScript Model-
to-Text transformation engine. In addition, different views
and analysis functionalities, such as simple impact analy-
sis, are supported. It is developed by SINTEF as an Eclipse
plug-in and it is free to download.

Model-based verification and validation

As part of developing a Simulation, Validation and Testing
(SV&T) Workbench in MODELPLEX, several tools were
developed, in addition to a Testing Metamodel. Tools are
listed here and we refer to the project website for more infor-
mation.

BCC: behavioural consistency checker

(http://move.lip6.fr/software/BCC/) BCC is a model-check-
ing tool for checking the consistency of UML diagrams. It
was developed by LIP6 as an Eclipse plug-in. The prototype
version can be downloaded for free.

EVL: Epsilon Validation Language

(http://www.eclipse.org/gmt/epsilon/doc/evl/) EVL is a val-
idation language developed by York University built on top
of Epsilon Object language for defining and checking con-
straints on models. EVL constraints are quite similar to
OCL constraints. However, EVL also supports dependencies
between constraints (e.g. if constraint A fails, do not evaluate
constraint B), customizable error messages to be displayed
to the user and the specification of fixes, which users can
invoke to repair inconsistencies. It is developed as an Eclipse
plug-in and it is part of the Epsilon framework.

Escalator tool for refinement verification

(http://heim.ifi.uio.no/~massl/escalator/) Escalator is a tool
for verifying the refinement of UML2 sequence diagram
specifications, based on the formal definition of refinement.
It can be used in combination with any UML tool for speci-
fying sequence diagrams in EMF-based XMI. It is developed
by SINTEF as an Eclipse plug-in.

FOKUS!MBT: test derivator tool by Fraunhofer FOKUS

FOKUS!MBT represents an UML based test generator that
supports the derivation of test suites from UML system mod-
els augmented with the U2TP (UML2 Testing Profile). The
tool has a proprietary license. For contact details, please refer
to MODELPLEX website.

IBM Model Debugger and test generator

IBM Model Debugger is a tool for the execution of behav-
ioural UML models and the visualization of the execution
by animating the behavioural diagrams. The Test Generator
automatically generates tests based on a behavioural UML
model. For contact details please refer to MODELPLEX
website.

123

http://www.monticore.de/
http://www.reuseware.org/index.php/Reuseware
https://www.research.ibm.com/haifa/projects/services/grokking/
https://www.research.ibm.com/haifa/projects/services/grokking/
http://www.modelbased.net/modelplex/traceability/
http://move.lip6.fr/software/BCC/
http://www.eclipse.org/gmt/epsilon/doc/evl/
http://heim.ifi.uio.no/~massl/escalator/

www.manaraa.com

638 P. Mohagheghi et al.

Metrino

(http://www.modelbus.org/modelbus/index.php/metrino)
Metrino is an integrated set of tools to support the valida-
tion and quality assurance of models based on OCL (Object
Constraint Language) and SMM (Structured Metrics Meta-
model). Models can be developed in UML or a DSL based on
MOF. It is developed by Fraunhofer FOKUS as an Eclipse
plug-in and it is free to download.

MBTM: Model-Based Testing Metrics

The MBTM tool allows measuring test quality in a language
independent way. It is an open source tool developed by
RWTH Aachen University. For contact details please refer
to MODELPLEX website.

Simulation

MDPE: Model-Driven Performance Engineering

(http://reuseware.org/index.php/MDPE/) It is a workbench
developed in MODELPLEX by Dresden University of Tech-
nology, SAP Research and XJ Technologies for analysing
business processes from a performance perspective by using
historical data. More detail is provided in Sect. 3.2 of this
paper.

AnyLogic

(http://www.xjtek.com/) AnyLogic is a commercial simula-
tion tool developed by XJ Technologies. The company was
a MODELPLEX partner.

Other

AM3: AtlanMod MegaModel Management

(http://www.eclipse.org/gmt/am3/) The goal of AM3 is to
provide an integrated environment for the management of
the various modelling artefacts coming from a MDE devel-
opment process. It is developed by INRIA.

Lightweight repository and team provider

This tool is a model-based repository solution for the com-
bined management of models and other artefacts. The client
side uses an Eclipse plug-in that implements the Team Pro-
vider Interface. In the version available in MODELPLEX, the
granularity was at the model level and not at that of model
fragments. It is developed by Fraunhofer FOKUS and has
an EPL (Eclipse Public License) license. For contact details
please refer to the MODELPLEX website.

References

1. Brown, A.: An Introduction to Model Driven Architecture—Part
I: MDA and today’s systems. The Rational Edge (2004)

2. Davis, F.: Perceived usefulness, perceived ease of use, and
user acceptance of information technology. MIS Q 13(3), 318–
339 (1989)

3. Evans, A., Fernández, M.A., Mohagheghi, P.: Experiences of devel-
oping a network modeling tool using the Eclipse environment. In:
Proc. of ECMDA-FA’09. LNCS, vol. 5562, pp. 301–312. Springer,
Berlin (2009)

4. Ferrari, A., Fantechi, A., Papini, M., Grasso, D.: An industrial
application of formal model-based development: the Metro Rio
ATP case. In: Proc. of 2nd Int. Workshop on Software Engineer-
ing for Resilient Systems (SERENE 2010). http://www.dsi.unifi.
it/~fantechi/Collaborazionegets/pubblicazioni.html

5. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-
driven development using UML 2.0: promises and pitfalls. IEEE
Comput. 39(2), 59–66 (2006)

6. Fritzsche, M., Gilani, W., Fritzsche, C., Spence, I.T.A., Kilpa-
trick, P., Brown, T.J.: Towards utilizing model-driven engineering
of composite applications for business performance analysis. In:
Proc. of ECMDA-FA’08. LNCS, vol. 5095, pp. 369–380. Springer,
Berlin (2008)

7. Fritzsche, M., Picht, M., Gilani, W., Spence, I., Brown, J., Kilpa-
trick, P.: Extending BPM environments of your choice with per-
formance related decision support. In: Proc. of Business Process
Management (BPM’09). LNCS, vol. 5701, pp. 97–112. Springer,
Berlin (2009)

8. Fritzsche, M., Gilani W., Lämmel R., Jouault, F.: Model transfor-
mation chains in model-driven performance engineering: experi-
ences and future research needs. In: Proc. of Modellierung 2010.
LNI, vol. 161, pp. 213–220. Springer, Berlin (2010)

9. Hästbacka, D., Vepsäläinen, T., Kuikka, S.: Model-driven devel-
opment of industrial process control applications. J. Syst. Softw.
(2011, accepted) doi:10.1016/j.jss.2011.01.63

10. Johannes, J., Fernández, M.A.: Adding abstraction and reuse to a
network modelling tool using the Reuseware composition frame-
work. In: Proc. of ECMFA’10. LNCS, vol. 6138, pp. 132–143.
Springer, Berlin (2010)

11. Kirstan, S., Zimmermann, J.: Evaluating costs and benefits of
model-based development of embedded software systems in the
car industry—results of a qualitative case study. In: Proc. of 5th
C2M:EEMDD Workshop at ECMFA’10, pp. 18–29 (2010)

12. Kelly, S., Pohjonen, R.: Worst practices for domain-specific mod-
elling. IEEE Softw. 26(4), 22–29 (2009)

13. Kätker, S., Patig, S.: Model-driven development of service-ori-
ented business application systems. In: Business Services: Konz-
epte, Technologien, Anwendungen. Wirtschaftsinformatik, Band
1, pp. 171–180. Österreichische Computer Gesellschaft (2009)

14. Mohagheghi, P., Dehlen, V.: Where is the proof? A review of experi-
ences from applying MDE in industry. In: Proc. of ECMDA-FA’08,
LNCS, vol. 5095, pp. 432–443. Springer, Berlin (2008)

15. Mohagheghi, P.: An approach for empirical evaluation of model-
driven engineering in multiple dimensions. In: Proc. of 5th
C2M:EEMDD Workshop at ECMFA’10, pp. 6–17 (2010). http://
www.esi.es/modelplex/c2m/papers.php

16. Schmidt, M., Polowinski, J., Johannes, J., Fernández, M.A.: An
integrated facet-based library for arbitrary software components.
In: Proc. of ECMFA’10, LNCS, vol. 6138, pp. 261–276. Springer,
Berlin (2010)

17. Stefanescu, A., Wieczorek, S., Kirshin, A.: MBT4Chor: a model-
based testing approach for service choreographies. In: Proc. of
ECMDA-FA’09. LNCS, vol. 5562, pp. 313–324. Springer, Berlin
(2009)

123

http://www.modelbus.org/modelbus/index.php/metrino
http://reuseware.org/index.php/MDPE/
http://www.xjtek.com/
http://www.eclipse.org/gmt/am3/
http://www.dsi.unifi.it/~fantechi/Collaborazionegets/pubblicazioni.html
http://www.dsi.unifi.it/~fantechi/Collaborazionegets/pubblicazioni.html
http://dx.doi.org/10.1016/j.jss.2011.01.63
http://www.esi.es/modelplex/c2m/papers.php
http://www.esi.es/modelplex/c2m/papers.php

www.manaraa.com

Where does model-driven engineering help? 639

18. van Amstel, M., Lange, C., van den Brand M.: Metrics for analys-
ing the quality of model transformations. In Proceedings of the 12th
ECOOP Workshop on Quantitative Approaches on Object Oriented
Software Engineering, pp. 41–51 (2008)

19. Wadler, P.: Deforestation: transforming programs to eliminate
trees. In: Proc. of the 2nd European Symposium on Programming,
pp. 231–248. North-Holland, Amsterdam (1988)

Author Biographies

Parastoo Mohagheghi is a
research scientist at SINTEF
and Adjunct Associate Profes-
sor at The Norwegian Univer-
sity of Science and Technology
(NTNU). She received her Ph.D.
in Information and Communi-
cation Technology from NTNU
in 2004. She has participated
in several national and interna-
tional research projects and has
industry experience from Erics-
son in Norway. Her research
interests include software qual-
ity, model-driven development,

software reuse, service engineering, cloud computing and empirical
studies. She is a member of IEEE.

Wasif Gilani holds a Ph.D. in
Computer Science from Fried-
rich Alexander Universitaet
Erlangen-Nuernberg Germany
and a Masters degree in Com-
putational Engineering from the
same university. Wasif has work
experience in different indus-
tries like oil and gas, manu-
facturing and IT. Since 2007
he has been working for SAP
Research and has been leading
the research areas of process-
oriented business process per-
formance management, business

continuity management and model-driven engineering. His research
interests also include service engineering, software product line engi-
neering and adaptable systems.

Alin Stefanescu is a researc-
her at the University of Pitesti
in Romania. He received his
Ph.D. in computer science from
University of Stuttgart and his
M.Sc. from University of Bucha-
rest. His research career path
intersected both academic and
industrial worlds. In academia,
Alin investigated software vali-
dation and verification at Euro-
pean universities in Edinburgh,
Munich, Bucharest and Konstanz.
In industry, at SAP Research,
he made contributions in model-

based testing for service-oriented architectures and transferring the
results into the SAP development groups.

Miguel A. Fernandez is cur-
rently a project manager at Erics-
son. He worked in Telefónica
I+D in Valladolid, Spain before
joining Ericsson, where he par-
ticipated in several research
projects. He holds a computer
science degree from Universidad
de Oviedo. His research interests
include model-driven engineer-
ing, domain-specific languages,
business process modelling,
autonomic computing and their
application to the telecommuni-
cations industry and, in particu-
lar, to remote network manage-
ment.

Bjørn Nordmoen has a Mas-
ter of Physics from Univer-
sity in Oslo (1983) and has
been working at WesternGeco in
the R&E department since then.
He has been the Chief System
Architect at the Oslo Technol-
ogy Center since 2001, where
he overlooks and mentors soft-
ware architecture activities. Dur-
ing the past years he has been
involved in several EU projects
such as MODELPLEX, Model-
Ware, COMBINE and OBOE.

Mathias Fritzsche is a devel-
oper for Modeling Methodolo-
gies and Taxonomy at SAP AG.
He holds a Ph.D. in Computer
Science from the Queens Univer-
sity Belfast and a M.Sc./B.Sc. in
Software Systems Engineering
from the Hasso Plattner Institute,
Potsdam University. Mathias has
a research interest in model-
driven engineering, in particular
methologies and tool architec-
tures for modular creation of
models. Additionally, he has
a strong interest in employing

models for process performance analytics, process optimizations and
business continuity management.

123

www.manaraa.com

Copyright of Software & Systems Modeling is the property of Springer Science & Business
Media B.V. and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

	Where does model-driven engineering help? Experiences from three industrial cases
	Abstract
	1 Introduction
	2 The research context
	3 SAP: large-scale enterprise business applications
	3.1 Research method
	3.2 Model-Driven Performance Engineering (MDPE)
	3.3 Conclusions

	4 Telefónica: network modelling in telecommunication domain
	4.1 Research method
	4.2 The telecom DSL prototype
	4.3 Conclusions

	5 WesternGeco: model-based simulation and testing
	5.1 Research method
	5.2 Comparing developing a DSL with a UML profile
	5.3 Testing using simulator generation
	5.4 Conclusions

	6 Summarizing the experiences
	6.1 Experiences regarding the MDE Approach
	6.2 Relation to the state of the art
	6.3 Challenges

	7 Final conclusions
	Acknowledgments
	Appendix
	Model engineering
	ATL: ATLAS Transformation Language
	AMW: ATLAS Model Weaver
	DSL evaluation framework
	Epsilon environment and languages
	EMFText
	EuGENia tool for developing GMF editors
	MoDisco: model discovery
	MOFScript
	MontiCore
	Reuseware composition framework
	System Grokker
	TraMDE: trace analysis tool
	BCC: behavioural consistency checker
	EVL: Epsilon Validation Language
	Escalator tool for refinement verification
	FOKUS!MBT: test derivator tool by Fraunhofer FOKUS
	IBM Model Debugger and test generator
	Metrino
	MBTM: Model-Based Testing Metrics
	MDPE: Model-Driven Performance Engineering
	AnyLogic
	AM3: AtlanMod MegaModel Management
	Lightweight repository and team provider

	References

